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I. INTRODUCTION

Analytical energy gradients for time-dependent self-consistent field (TD-SCF) methods,

ranging from time-dependent Hartree Fock (TD-HF) to time-dependent density functional

theory (TD-DFT), allow excited state molecular dynamics (ESMD) and geometry optimiza-

tions to be performed efficiently for large systems.1–7 Specifically, analytical gradients allow

for efficient computation of forces by eliminating the need to calculate derivatives of den-

sity matrices or wavefunctions.8–18 This requires a variational formulation of the excited

state (ES) energy.19–25 Although already formulated for the gas phase,26 variational formu-

lations and analytical gradients for TD-SCF methods when solvent effects are present have

not been fully explored. Including solvent effects in these calculations has the benefit of

better describing states which are significantly affected by solvation, including those with

charge-transfer (CT) character.27–29

Solvent effects for the ES can be simulated using several models in TD-SCF methods.

In the linear response (LR) model, the solvent is polarized by the transition density.30–32

Therefore, it is best applied to solvent effects for excitations with significant transition dipole

(bright states) or higher order transition multipoles. In the vertical excitation (VE)33–38 and

state-specific (SS)39,40 models, the solvent is polarized by the ES charge density and is thus

best applied to states with CT character. For calculations of ES properties, the VE model

can be thought of as an approximation to the latter which, as shown in this study, allows

for a variational formulation. This approximation is the neglect of SS solvent effects in the

ground state (GS) self-consistent field (SCF) equation. Further information and comparisons

between these models is available in Ref. 41.

Analytical gradients were formulated some years ago for the LR model in TD-SCF and

other methods.30,42,43 However, with the LR model, the time-dependent Stokes shift and

thus fluorescence solvatochromism cannot be described accurately because of the lack of

direct interaction between the solvent and ES charge density.40,44–47 This is because accurate

simulations of fluorescence solvatochromism requires relaxation of the molecular structure

on the ES potential energy surface.27,48–50 This has not yet been feasible with SS or VE

methods in TD-SCF theories for large molecules due to the lack of analytical gradients. As a

result, simulations of ES solvent effects in many important systems have not been performed.

The analytical gradient of the VE model in equations of motion coupled cluster theory35
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and the SS model in symmetry-adapted cluster-configuration interaction theory have been

formulated36 but are not suitable for the simulation of ESMD with large systems because of

the high computational cost of the underlying quantum chemical method. Formulation of

a variational ES energy from TD-SCF methods is required for ESMD of large systems and

relevant time scales.49

The ES energy cannot be obtained directly from TD-SCF methods. Instead, it is deter-

mined from the addition of the excitation energy to the GS energy. The major issue for a

variational formulation of the ES energy is that the excitation energy does not result from

an expression that is variational with respect to the GS density matrix P . However, the

Z-vector technique can be used to formulate a variational expression after the excitation

energies have been calculated.26 The ES density matrix that is the result of a variational

ES energy expression is described as the so-called relaxed density matrix. It is determined

using Lagrange multipliers in a free energy functional. When the VE model is used, the

variational formulation of the ES energy is modified substantially from vacuum. Here, we

clearly outline the process of obtaining the variational ES energy for the VE model in this

publication. It is also found that a similar formulation is not possible for the SS model. For

completeness, we show this by examining the effects of the SS model on variation of the GS

electronic energy.

The GS electronic energy in vacuum obeys the Hartree-Fock (HF) or Kohn-Sham (KS)

variational principle.24,51,52 The effective potential of a polarizable solvent from the LR or VE

model is mathematically similar to the Hartree potential in vacuum and the GS electronic

energy calculated with these methods is also variational. On the other hand, using the SS

model in TD-SCF methods breaks the variational principle for the GS electronic energy.

Interestingly, it is found that upon enforcing the condition that the GS energy expression

is variational while using the SS model, it is reduced to the VE model. Essential elements

of the SS model are lost in this variational formulation, such that the derived analytical

gradients would not reflect the original formulation for single-point calculations. Thus, after

discussing the SS model, we formulate analytical gradients for only the LR and VE models.

This publication is outlined as follows. In section II, the GS variational principle is

examined for the SS model. In section III, the necessary manipulations to provide variational

excitation energy expressions are described using the vacuum formalism and extended to the

LR and VE models. In section IV the Z-vector technique is applied to give variational ES
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energies. In section V, analytical energy gradients for vacuum, LR, and VE models are given

using the results of sections III and IV. In section VI, numerical results are provided for two

examples. First, the gradient of the excitation energy with respect to a static electric field

is used to test the Z-vector formulations. Then, the ultrafast dynamics in solution of a state

with CT character are explored to test the analytical ES energy gradients. Semiempirical

model chemistry, specifically the AM1 model, is used for these simulations.52 Conclusions

are presented in section VII.

II. GROUND STATE VARIATIONAL ENERGY EXPRESSION

In a HF or KS calculation without solvent effects, the GS electronic energy Egr is a

variational quantity.53,54 This holds true not only for calculations in vacuum, but also with

either the LR model or the VE model, since they both use the same Fock-like operator which

has similar structure to the standard calculations in vacuum.33,55 This does not hold for the

SS model because the Fock-like operator has been modified with quantities calculated from

the TD-SCF equations.39,41 So far, a variational formulation of the ES energy with the SS

model has not been found. The difficulty can be made clear by examining Egr using the

following optimization process that ensures stationarity with respect to variation of all GS

and ES density matrices.

A free energy functional F corresponding to Egr can be written as

F(φ, λ) =
∑
µ∈occ
〈φµ|t+

1

2
V (P )|φµ〉+

∑
µ,ν∈occ

λµ[δµν − 〈φµ|φν〉] (1)

where P =
∑

µ∈occ |φµ〉〈φµ| is the GS single electron density matrix and tijσ are one-electron

integrals accounting for the kinetic energy and nuclear attraction of an electron. µ is the

molecular orbital index. Here and throughout the main body of this manuscript, an or-

thogonal atomic orbital basis is assumed. This could be performed, for instance, by Löwdin

decomposition of the overlap matrix S.54 Moreover, expressions for the working equations in

a nonorthogonal basis are given in Appendix A. The elements of the operator V (x) acting

on an arbitrary density matrix x are given by

Vijσ(x) = Jijσ(x)−Kijσ(x) + vxcijσ(x) (2)
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where vxc(x) is the exchange-correlation potential (i.e. the functional derivative of the

exchange-correlation action)53 and the Hartree and exchange terms are represented as

Jijσ(x)−Kijσ(x) =
∑
klσ′

(ijσ | klσ′)xklσ′ − cx(ikσ | jlσ′)xklσδσσ′ . (3)

The parameter cx allows mixing of pure DFT and HF theories, e.g. in the case of Becke’s

hybrid functionals.56–58 The indices i, j, k, l and σ refer to the spatial and spin indices,

respectively, and (ijσ | klσ′) are conventional two-electron integrals representing Coulombic

interactions.

In Eq. 1, the Lagrange multipliers λµ ensure the orthonormality of the molecular orbitals

φµ. Upon optimization of Eq. 1, they are equivalent to the molecular orbital energies for

the GS. When F is minimized with respect to φµ, only variation of either bra or ket is

necessary because |φµ〉 and 〈φµ| are complex conjugates. For the vacuum formulation, this

optimization results in,

F (P )|φµ〉 = λµ|φµ〉. (4)

The standard Fock or KS matrix without solvent effects is given by

F (P ) = t+ V (P ). (5)

Eq. 4 is the GS SCF equation. The GS SCF energy, Escf =
∑

µ∈occ λµ, is not a variational

quantity. Half of the electron-electron interaction must be subtracted to obtain Egr. This

is clearly seen by multiplying Eq. 4 from the right by 〈φµ|, summing over the occupied

molecular orbitals, and inserting the result in Eq. 1. Upon optimization, the free energy

functional is equivalent to Egr,

Fopt = Egr = Escf −
1

2

∑
µ∈occ

〈φµ|V (P )|φµ〉. (6)

When applying Eq. 1 to the Fock-like operators which use either the LR or VE model,

the modified F is given by

FLR(P ) = F (P ) + VS(P ). (7)

The effective solvent potential VS(x) can be calculated using any method that can be treated

in the same way as the Hartree potential. Examples are the polarizable continuum model

(PCM)59 or polarizable QM/MM methods.60 Since LR and VE models use the GS density

5



Solvent effects in TD-SCF methods II: variational formulations and analytical gradients

matrix in this effective potential, it has similar properties to V (P ) and is treated in a same

manner in Eqs. 5 and 6.

On the other hand, the SS model, which uses the modified F given by

FSS(P ) = F (P ) + VS(P̄k) (8)

breaks the necessary stationarity of Egr. Here, P̄k = P +Tk is the so-called unrelaxed single

electron density matrix for ES k and Tk is the so-called unrelaxed difference between the GS

and ES single electron density matrices.6,41,61 The term which must be examined is VS(Tk).

Tk is a function of the transition density matrix, ξk, and P ,61

Tk = [[ξ†k,P ], ξk]. (9)

when the occupied block of P is equivalent to the identity matrix I. The structure of ξk is

described in detail in Sec. III. We replace F with FSS in Eq. 1 to give the functional FSS
and set the derivative with respect to ξk to zero. This condition equates to

∂FSS
∂ξk

= [VS(P ), ξk] = 0. (10)

where the matrix elements of a scalar (k) by matrix partial derivative are given by

(∂k/∂x)nm = ∂k/∂xnm.

To illustrate the significance of this result, we multiply Eq. 10 from the left by 〈ξk|. This

can be written as

〈ξk|[VS(P ), ξk]〉 = Tr(TkVS(P )) = Tr(PVS(Tk)) =
∑
µ∈occ

〈φµ|VS(Tk)|φµ〉 = 0. (11)

where we have used the cyclic invariance of the trace given by ((Tr(xy) = Tr(yx)) for

arbitrary density matrices x and y. Eq. 10 states that the interaction between Tk and P

(through the effective solvent potential operator) is zero. Therefore, enforcing Eq. 10 is

equivalent to reducing the SS model to the VE model. VS(Tk) will then have no effect in

the GS SCF calculation. In the following study, we formulate analytical gradients only for

the LR and VE model because the essential element of the SS model, where the GS SCF

calculation involves the effective solvent potential corresponding to the ES charge density,

is lost in this variational formulation.
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III. VARIATIONAL EXCITATION ENERGY EXPRESSIONS

A. Vacuum formalism and addition of the linear response solvent model

Throughout this and later sections, the algebra and formalisms for the TD-SCF equations

described in detail in Ref. 61 are used.5,6,25,62–64 This formalism is often referred to as the

collective electronic oscillator method and is equivalent to other formulations of the TD-HF

and TD-DFT equations.25,65 To clearly state notation, the following relations are given. The

bra-ket notation around a matrix (here also a double arrow) denotes tensorial mapping66 of

the interband partitions,

|ξ〉 =

( ~X
~Y

)
= |X,Y 〉 ⇔

 0 Y

X 0

 = ξ. (12)

The conjugate of a tensorially mapped interband matrix such as ξ invokes a sign change,

e.g.,

〈ξ| = ( ~X,−~Y ) = 〈X†,−Y †| ⇔

 0 X†

−Y † 0

 = [P , ξ†]. (13)

where the commutator with P is used to change the sign of Y . These relations greatly

simplify the algebra of the TD-SCF equations.

The Coulomb-exchange and exchange-correlation term for the TD-SCF equations G(x)

is given by

Gijσ(x) = Jijσ(x)−Kijσ(x) +
∑
klσ′

fxcijσ,klσ′xklσ′ , (14)

where the fxc kernel is a functional derivative of the exchange-correlation potential vxc from

Eq. 3. Similar to the GS SCF equations, TD-HF is recovered when cx is set to one and fxc

to zero. A free energy functional, G for the TD-SCF equations in vacuum,26,61 can now be

defined using the Liouville space super-operator L and the Lagrange multiplier Ω,

G(P , ξ,Ω) = 〈ξ|L|ξ〉+ Ω(1− 〈ξ|ξ〉). (15)

The standard L in a vacuum is given by

L|x〉 ⇔ [F (P ),x] + [G(x),P ]. (16)

where tensorial mapping was defined in Eq. 12. Variation of G(P , ξ,Ω) with respect

to 〈ξ| in Eq. 15 gives the well known RPA eigenvalue equation26 in the Liouville space
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representation,41

∂G
∂〈ξ|

= L|ξ〉 − Ω|ξ〉 = 0, (17)

where Ω is now defined as the excitation energy.

Variation of G(P , ξ,Ω) with respect to Ω gives the RPA normality condition from the

inner product,61 defined by

〈ξ|ξ〉 = ~X2 − ~Y 2 = 1. (18)

Upon optimization with respect to the parameters ξ and Ω, i.e. insert Eqs. 17 and 18 in

Eq. 15, G is equivalent to the excitation energy given by

Ω = 〈ξ|L|ξ〉. (19)

The extension of the vacuum formalism (Eq. 15) to the LR solvent model has been performed

elsewhere.30 It requires replacement of the vacuum Lioville-space operator L with the LR

Lioville-space operator LLR, given by

LLR|x〉 ⇔ [FLR(P ),x] + [G(x),P ] + [VS(x),P ]. (20)

This results in the same substitution of L in Eq. 17 with LLR.

B. Vertical Excitation Model

For the VE model, the free energy functional becomes

GV E(P , ξ,Ω) = 〈ξ|LV E|ξ〉 −
1

2
〈ξ|[VS(Tk), ξ]〉+ Ω(1− 〈ξ|ξ〉). (21)

where LV E is defined as

LV E|x〉 ⇔ [FLR(P ),x] + [G(x),P ] + [VS(Tk),x]. (22)

Variation of GV E(P , ξ,Ω) with respect to Ω results in Eq. 18, while variation with respect

to ξ results in
∂GV E
∂〈ξ|

= LV E|ξ〉 − Ω|ξ〉 = 0. (23)

As detailed in Ref. 49, using the VE model evokes iterative solution of this equation to

convergence of the solvent polarization and Ω. If this equation is not solved to convergence,

e.g. performing only one iteration of solution of Tk and |ξ〉 similarly to what has been
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called the corrected LR model in the literature,67,68 a variational formulation and analytical

gradient would not be possible since the dependence of Tk on |ξ〉 would be unknown. We

note that using an unconverged result will give unpredictable results since the speed of

convergence is system dependent.

In contrast to vacuum and LR formulations, GV E 6= Ω after optimization, where Ω is

given here by Eq. 19 using LV E. The optimized free energy functional GV E is instead equal

to Ω′ given by

Ω′ = Ω− 1

2
Tr(TVS(Tk)). (24)

The quantity Ω′ does not occur in the LR model because the VE effective solvent potential

is of second order in ξ while the LR effective solvent potential is of first order.

The variational excitation energy expression for the VE model, Eq. 24, is obtained by

calculating the eigenvalues of LV E and then subtracting the energy correction from Ω. This

resembles the calculation of Egr from Eq. 6. The correction is not half of the total solvation

energy, but rather half of the part of the solvation energy arising from the interaction

(through the effective solvent potential) between an unrelaxed difference density and the

unrelaxed difference density of state k. The portion of the solvation energy which does not

enter this correction correponds to the term Tr(TVS(P )). For the LR and VE models,

∂Ω/∂P or ∂Ω′/∂P must also be set to zero. This is achieved using the Z-vector technique

described in section IV.

IV. VARIATIONAL EXCITED STATE ENERGY EXPRESSION

The ES energy is defined as E = Egr + Ω for both the vacuum and LR formulations

and E = Egr + Ω′ for the VE formulation. An expression for the ES energy can be made

stationary with respect to variation of P by use of the Z-vector technique.69,70 To do so

requires enforcing stationarity of P upon variation of Ω. Here, we generally follow the

methods of Furche and Aldrichs26, but vary P rather than the molecular orbital coefficients.

As with the rest of the main body of this publication, an orthogonal atomic orbital basis is

assumed, but explicit results for a nonothogonal basis are given in Appendix A.

A matrix of Lagrange multipliers Z enforces stationarity with respect to variations in P .

A modified free energy functional is given by

J (P , ξ,Z,Ω) = G(P , ξ,Ω) + 〈Z|[F (P ),P ]〉. (25)
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The added term is zero because [F (P ),P ] = 0 so that the minimized functional is still

equivalent to the excitation energy. Variation with respect to P gives an equation for Z.

The condition leading to this is

∂J
∂P

= 0 = 〈ξ| ∂L
∂P
|ξ〉+ 〈Z|∂[F (P ),P ]

∂P
〉. (26)

where the matrix by matrix partial derivative is a fourth-order tensor given by (∂x/∂y)nm,jk =

∂xnm/∂yjk. Carrying out the differentation of the second term on the right hand side, the

result is concisely written as

L|Z〉 ⇔ [〈Z|∂[F (P ),P ]

∂P
〉,P ]. (27)

One may substitute the appropriate F and Liouville-space operator into Eq. 26 and rear-

range to obtain a system of linear equations. In vacuum, this process results in

L|Z〉 ⇔ −[〈ξ| ∂L
∂P
|ξ〉,P ] = −[[[P , ξ†], G̃(ξ)] +G(T ),P ] (28)

where G̃ involves the functional derivative of fxc given by gxc, i.e.

G̃ijσ(x) = Jijσ(x)−Kijσ(x) +
∑
klσ′

gxcijσ,klσ′,mnσ′′xklσ′xmnσ′′ . (29)

For LR and VE solvent models, substituting with LLR or LV E and FLR(P ) gives the following

Z-vector equations,

LLR|Z〉 ⇔ −[〈ξ|∂LLR
∂P
|ξ〉,P ] = −[[[P , ξ†], G̃(ξ) + VS(ξ)] +G(T ) + VS(T ),P ]. (30)

for the LR model and

LLR|Z〉 ⇔ −[〈ξ|∂LV E
∂P

|ξ〉,P ] = −[[[P , ξ†], G̃(ξ)] +G(T ) + VS(T ) +
1

2
[[ξk,VS(T )], ξ†k],P ]

(31)

for the VE model.

The third term on the right hand side of Eqs. 30 and 31, appearing in both LR and VE

model Z-vector equations, is a result of the solvent effects in the GS SCF calculation, i.e.

the solvent shift of the molecular orbital energies. The fourth term on the right hand side

of Eq. 31 is the result Tk explicitly depending on P as written in Eq. 9. This term results

from the variation given by

T (δP , ξk) = [[ξ†k, δP ], ξk] (32)
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and appears in the VE model equations since Tk is used to polarize the solvent. As is shown

numerically in Sec. VI, this is necessary for the variational formulation. Noting that Egr

and the excitation energy expressions are variational with respect to all involved density

matrices, the analytical gradient expressions for the ES energy can be written.

V. ANALYTICAL GRADIENT EXPRESSIONS

With the variational ES energy expressions in hand, analytical gradients with respect to

a nuclear coordinate R, or other parameter, are possible by noting that the chain rule gives

∂Ω

∂R
=
∂J
∂R

=
∑
i

∂J
∂xi

∂xi
∂R

(33)

for all parameters xi in J . For all parameters xj (j ∈ i) made variational in the above

procedure,
∂J
∂xj

= 0, (34)

so that those terms do not contribute to the gradient. To be concise, we write the gradient

as (R), e.g., L(R). With stationarity of the parameters of J determined, the derivative of

the excitation energy Ω or Ω′ can be calculated according to

Ω(R) = J (R) = 〈ξ|L(R)|ξ〉+ 〈Z|[F (R)(P ),P ]〉. (35)

Introducing the notation P∆ = T +Z as the relaxed difference density, Eq. 35 is written as

Ω(R) = Tr(ξG(R)(ξ)) + Tr(P∆F
(R)(P )) (36)

for the vacuum formulation. For the LR model, this becomes

Ω(R) = Tr(ξG(R)(ξ)) + Tr(P∆F
(R)(P )) + Tr(ξV

(R)
S (ξ)) + Tr(P∆V

(R)
S (P )). (37)

Similarly, the analytical gradient for the corrected excitation energy of the VE model is

given by

Ω′(R) = Tr(ξG(R)(ξ)) + Tr(P∆F
(R)(P )) + Tr(P∆V

(R)
S (P )) +

1

2
Tr(TV

(R)
S (Tk)). (38)

Analogous equations in the position and momentum basis are given in appendix B. For VE

and LR models, the GS energy gradient is given by differentiation of Eq. 1 with substitution

of FLR(P ) to give

E(R)
gr = Tr(PF (R)(P ))− 1

2
Tr(PV (R)(P )) +

1

2
Tr(PV

(R)
S (P )). (39)
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These analytical gradients allow one to practically calculate molecular forces. The forces

can, for example, be used to determine the molecular motion in dynamic simulations or op-

timize the molecular structure. Since the gradients of the energies with respect to all density

matrices are zero, only the gradients of operators need to be calculated. The gradients of

the effective solvent potential operators are given elsewhere for methods such as PCM55 and

conductor-like PCM,71,72 but may also be easily formulated for polarizable force-fields and

other solvent models such as effective fragment potential methods73,74, the langevin dipole

model, or surface-constrained all atom solvent.75,76

VI. NUMERICAL RESULTS

Numerical tests of these variational expressions and analytical gradients are performed for

two realistic molecular systems using the semiempirical AM1 Hamiltonian in TD-HF theory.

The molecules used in these examples are shown in Fig. 1. First, the variational expressions

are tested by using a static electric field gradient. Second, the analytical gradients for

movement of nuclei are tested using microcanonical ESMD.

A. Static Electric Field

The variational energy expressions can be tested with respect to variation of P or ξ by

including the effects of a static electric field. This is done numerically and compared with

the analytical solution, i.e. the dipole moment of the relaxed or unrelaxed difference density

matrix. The electric field, denoted by ~E , is introduced in either the GS SCF or TD-SCF

calculations. When it is introduced into the GS SCF calculation, the effect on the TD-SCF

calculation is the result of shifting of the GS molecular orbital energies. When introduced

only into the TD-SCF calculation, the GS is calculated at zero field and the molecular orbital

energies are not affected. Greater detail is available in Appendix C.

Since the electric field interacts with the molecule through it’s dipole moment, calculation

of ∂Ω/∂ ~E by the finite difference method will reflect the dipole moment corresponding to

T when introduced in the TD-SCF calculation and P∆ when introduced in the GS SCF.

Comparison of the numerical and analytical results test the formulations given in Sections

III and IV.
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The third singlet ES of coumarin (Fig. 1) is used for this analysis since it has significant

solvent effects for both LR and VE models.41 Figure 2 shows a comparison of the numerical

energy gradient with the analytical result. The analytical results for the vaccuum, LR, and

VE model equations match the respective numerical results, confirming that the variational

expression given in this publication are indeed correct. For comparison, test of an incorrect

solution where it is assumed that Tk(δP , ξk) = 0 is also shown. The analytical gradient

calculated under this assumption does not reproduce the numerical results. We now examine

the energy gradient with respect to nuclear coordinates in ESMD.

B. Microcanonical excited state molecular dynamics

Using the analytical gradients presented in Sec. V, microcanonical ESMD can be per-

formed. This method is described in detail elsewhere.1,6,77,78 Here, dynamics of the first

singlet ES of p-nitroaniline, which has significant CT character, are explored. Figure 3

shows the ES energy as a function of time for several solvent potential strengths based on

the dielectric constant ε in an Onsager type effective solvent potential given by

VS(x) =
ε− 1

ε+ 0.5
R−3µ̂ · Tr(µ̂x). (40)

Here, µ̂ is the dipole operator and R is the cavity radius taken to be 5 Å. In these micro-

canonical dynamics, the total energy is conserved with or without the solvent model (Fig.

C inset). This shows that the analytical gradients which are used to calculate the kinetic

energy are formulated and implemented correctly.

A motion corresponding to an out of plane bending of the NO2 substituent is observed

in dynamics when the VE model is used. The excitation energy also decreases rapidly to

nearly 0.1 eV by 30 fs for ε = 10 (not shown). This occurs at a slower rate as ε is decreased.

These results are now compared with experiment and theory from literature sources.

The first singlet ES of p-nitroaniline is well known to have significant CT character.

The geometry relaxation in vacuum of the first singlet state of an analogous molecule,

nitrobenzene, has been investigated using high accuracy calculations at the complete active

space SCF (CASSCF) level.79 It is dominated by an out of plane bending of the nitro group.

Experimentally, it has been shown that internal conversion to the electronic GS occurs in

both p-nitroaniline and nitrobenzene within a few hundred femtoseconds.80,81 This internal
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conversion occurs more rapidly in water (0.3 ps) in comparison to dioxane (0.5 ps) where

the former has a much larger static dielectric constant.82

The out of plane bending observed in these dynamic simulations has not been taken into

account in most theoretical studies of p-nitroaniline. In computational studies of the first

singlet ES of nitrobenzene, only twisting of the nitro group has been explored.3,80 In one

study, geometry relaxation performed with TD-DFT and the LR solvent model missed this

out-of-plane bending motion entirely. This is in agreement with the simulations presented

here, where those with the LR solvent model do not predict this motion (Fig. 3).3 However,

an out of plane bending is present in dynamics with the VE model. In the simulations

performed with the VE model, solvent assisted internal conversion is suggested by decay of

the excitation energy to the first singlet ES to near zero in concert with the observed −NO2

bending (not shown).

VII. CONCLUSION

Variational ES energy expressions and analytical gradients for TD-SCF methods with

polarizable solvent effects have been formulated. Enforcing a variational energy expression

in GS SCF equations with the SS solvent model reduces it to the VE model. To implement

analytical gradients using the LR model, the application of Eqs. 20, 30 and 37 is neccessary.

To implement analytical gradients using the VE model, Eqs. 22 and 24, followed by Eqs. 31

and 38 are necessary. The use of the VE model in TD-SCF methods allows solvent effects

on ES with CT character to be explored. This was demonstrated in the first singlet ES

of p-nitroaniline using semiempirical model chemistry. Further developments using solvent

models in TD-SCF methods will involve non-adiabatic simulations and nonequilibrium dy-

namic solvent effects, as well as implementations of other polarizable solvent models and

force-fields in ESMD.
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Appendix A: Variational Excited State Energy Expression in a Nonorthogonal

Basis

The free energy functionals given in Section IV are written in an orthogonal basis, e.g.

those used for most semiempirical Hamiltonians. However, many nonorthogonal bases are

used in TD-SCF methods. The extension of the variational ES energy expression is straight-

forwardly given by optimization with the free energy functional written as

J̄ (P , ξ,Z,Ω,W ) = J (P , ξ,Z,Ω) + 〈W |(S − I)〉 (A1)

where W is a matrix of Lagrange multipliers enforcing stationarity of the excitation energy

with respect to the overlap matrix S. In the molecular orbital basis, S is equivalent to the

identity matrix I,

Snm = Smn = 〈φn|φm〉 = δnm. (A2)

Importantly, we note that Snm is symmetric and thus W is also required to be symmetric.

W spans both inter- and intraband space. The variational condition for W is simply the

orthonormality ensured by the GS SCF calculation.24,51,52 When the atomic orbital basis is

also orthonormal, the Lagrange multipliers W are not necessary because any gradient of

the overlap matrix will be zero, e.g. S(R) = 0 in an orthogonal atomic orbital basis.

An extensive derivation of analogous equations are available in Ref. 26. We avoid using

the atomic orbital basis explicitly here and write

∂J̄
∂P

=
∂J
∂P

+ 〈W | ∂S
∂P
〉 = 0 (A3)

where ∂Snm/∂Pjk = δnjδmk. W now becomes

W = −∂J
∂P

(A4)

where one can substitute the various definitions of J based on the desired solvent model,

i.e. LR or VE, from that given here in vacuum.
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We can now determine Z in the nonorthogonal basis from this equation. Using the

symmetries of W and L, i.e. that W is symmetric and that L is asymmetric, the solution

for Z is made independent of W by writing

Wiaσ −Waiσ = L(Z)iaσ − L(Z)aiσ +Qaiσ −Qiaσ = 0 (A5)

Here and in the following, a, b, c refer to occupied space and i, j, k refer to unoccupied space.

Q is given by

Q = 〈ξ| ∂L
∂P
|ξ〉. (A6)

This shows that the system of linear equations for Z in a nonorthogonal atomic orbital basis

is nearly identical to those given in section IV except that the equations for the hole-particle

space and particle-hole space are combined. One has thus also obtained the expression for

the occupied-virtual and virtual-occupied blocks of W . The occupied-occupied and virtual-

virtual blocks of W are obtained from

Wij = Qij +G(Z)ij;Wab = Qab (A7)

by straightforward differentiation of Eq. A4.

The Z-vector equation can also be written using the definition of the RPA matrix83–86 in

terms of the tetradic A and B matrices26,65,87 as in Ref. 26∑
jbσ′

(A+B)iaσ,jbσ′(Zjbσ′ + Zbjσ′) = −(Qiaσ −Qaiσ). (A8)

We explicitly write the hole-particle and particle-hole parts of Zjbσ′ here, while in Ref. 26

sums them implicitly, leading to some differences in the form of Q.

Determining W after Z has been determined requires only expanding the blocks of Q

and L(Z). For the vaccuum formulation, this is found in Ref. 26 while for the LR formalism

it is found in Ref. 30.

The use of the Z-vector technique with the VE model is not found elsewhere in the

literature. To connect with traditional notation, GV E must be written explicitly. Defining

the additive part of Q relevant to the VE model as QV E = 1
2
[[ξk,VS(T )], ξ†k] from Eq. 31

and writing explicitly the blocks of QV E while omitting the argument for VS(T ), this can

be written as

QV E
ab =

1

2
(Xk

aiV
S
ijX

k
bj + Y k

aiV
S
ij Y

k
bj −Xk

aiX
k
ciV

S
cb − V S

acY
k
ciY

k
bi) (A9)
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QV E
ij =

1

2
(Y k

aiV
S
abY

k
bj +Xk

aiV
S
abX

k
bj − Y k

aiY
k
akV

S
kj − V S

ikX
k
akX

k
aj) (A10)

QV E
ia =

1

2
(Y k

biV
S
bjX

k
aj +Xk

biV
S
bjY

k
aj − Y k

biY
k
bjV

S
ja − V S

ib Y
k
bjY

k
aj) (A11)

QV E
ai =

1

2
(Xk

ajV
S
jbY

k
bi + Y k

ajV
S
jbX

k
bi −Xk

ajX
k
bjV

S
bi − V S

ajX
k
bjX

k
bi) (A12)

where summation is implied by repeated indices. For V S
ia = V S

ai , the VE model part of the

RHS of Eq. A8 is

− (QV E
ia −QV E

ai ) =
1

4
V S(T )aj[(X + Y )kjb(X − Y )kbi + (X − Y )kjb(X + Y )kbi]

+
1

4
V S(T )ib[(X + Y )kjb(X − Y )kaj + (X − Y )kjb(X + Y )kaj] (A13)

which is the modification to the Z-vector equation in the notation of, e.g., the Casida

equations65 and relevant to the description of the position and momentum basis described

in the following appendix.

Appendix B: Excitation Energy Gradient in the Position/Momentum Basis

In the basis of position ( |X + Y 〉) and momentum (|X − Y 〉), the excitation energy is

given by

Ω(R) =
1

2
〈X† + Y †|(A+B)(R)|X + Y 〉+

1

2
〈X† − Y †|(A−B)(R)|X − Y 〉. (B1)

Here, the so-called orbital rotation Hessians A and B are given by

(A+B)aiσ,bjσ′ = δabδijδσσ′(εaσ − εiσ)

+ 2(aiσ|jbσ′) + 2fxcaiσ,bjσ′ − cxδσσ′ [(jaσ|ibσ + (abσ|ijσ)] (B2)

(A−B)aiσ,bjσ′ = δabδijδσσ′(εaσ − εiσ) + cxδσσ′ [(jaσ|ibσ + (abσ|ijσ)]. (B3)

This form is often used in other publications and is identical to the CEO formalism. The

gradient of the excitation energy from Eq. 36 in a nonorthogonal basis is sometimes written

as

Ω(R) =
∑
µνσ

t(R)
µν P

∆
µνσ +

∑
µνσ

SRµνWµνσ +
∑
µνσ

vxc,(R)
µνσ P∆

µνσ

+
∑

µνκλσσ′

(µν|κλ)(R)Γµνσ,κλσ′ +
∑

µνκλσσ′

f
xc,(R)
µνσ,κλσ′(X + Y )µνσ(X + Y )κλσ′ (B4)
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where the tetradic matrix Γ is the two particle difference density matrix given explicitly in

Ref. 26. Here, µ, ν, κ, λ refer to atomic orbitals. The goal here is to give the excitation energy

gradients corresponding to Eq. 37 and Eq. 38 in the basis of position and momentum. We

now write the additive term for this gradient for these solvent models. For the LR model,

Eq. 37, this is adapted from Ref. 30 as

∆Ω
(R)
LR =

∑
µνκλσσ′

〈µνσ|V̂S|κλσ′〉(R)PµνσP
∆
κλσ′

+
∑

µνκλσσ′

〈µνσ|V̂S|κλσ′〉(R)(X + Y )µνσ(X + Y )κλσ′ . (B5)

For the VE model, Eq. 38, we can write

∆Ω
(R)
V E =

∑
µνκλσσ′

〈µνσ|V̂S|κλσ′〉(R)PµνσP
∆
κλσ′ +

∑
µνκλσσ′

〈µνσ|V̂S|κλσ′〉(R)TµνσT
k
κλσ′ (B6)

where ∆Ω(R) has been written to signify the additive terms corresponding to the solvent

model in the excitation energy gradient and the effective solvent potential has been written

as an operator V̂S with the appropriate basis functions. For an example, see the appendix

of Ref. 41.

Appendix C: Static electric field

A static electric field (EF) is included in the Fock or Kohn-Sham operator according to

F̃ = F + ~E · µ̂. (C1)

where µ̂ is the standard dipole operator and ~E is the electric field vector. The interaction

energy of the EF in the GS for a molecule in vacuum is VE = ~E · ~µP and has a gradient of

∂VE/∂ ~E = ~µP . By varying ~E and calculating the gradient by the method of finite differences,

we can obtain the GS dipole moments. This allows one to test the stationarity of the

excitation energy with respect to variation of the P . For variation of ξ, the dipole moment

of T can be obtained by calculating the ground state with F , but using F̃ in the Liouville

equation for ξ. This is an artificial partitioning similar to the VE model. The gradient of

the interaction energy is found to be

δΩ/δ~E = ~µT (C2)
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when the electric field is added to the Fock operator after the GS SCF equations are solved

(before the TD-SCF calculation) and

δΩ/δ~E = ~µT+Z (C3)

when it is added in the GS calculation. If the energy is nonstationary with respect to T

(Eq. B2) or both T and P (Eq. B3), deviation will occur.
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OO

NO2 NH3

FIG. 1. Chemical structures used in numerical tests of variational formulations and analytical

gradients. Left: coumarin, right: p-nitroaniline.

FIG. 2. Change in excitation energy ∆Ω using electric field to perturb either the GS SCF (dashed)

or TD-SCF (solid) calculations for the third singlet ES of coumarin. This ES exhibits strong solvent

effects with both the LR and VE models.41 Calculations are performed with VE, LR, and vacuum.

The circles are calculated according to ∆Ω = ~E · ~µT while the triangles use ∆Ω = ~E · ~µT+Z for

dipole moments calculated at zero field with the dipole operator. Also pictured is a calculation

assuming no variation in Tk with respect to P in Eq. 31 (black triangles), which does not match

the numerical simulations.
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LR Model

VE Model

Total Energy (Potential+Kinetic)

10-5 eV

FIG. 3. Change in potential energy ∆E of first singlet ES during dynamics after photoexcitation

for p-nitroaniline. These dynamics include the VE model (top) or the LR model (bottom) using

an Onsager type potential. Light blue gives the dynamics in vacuum with increasing dielectric

constant up to ε = 10 in purple. The molecular conformation associated with the large decrease in

E with the VE model at 40 fs is an out of plane bending of the nitro group. The inset shows the

conserved total energy in the microcanonical dynamics, as expected for correct analytical gradients.
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